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ABSTRACT. The current smallest convex universal cover for sets of unit  diameter is described. This 
reduction of Sprague's cover is by 4- 10- J 1 and results in an asymmetrical cover. Another  small 
universal cover of  sets of unit diameter with an axis of symmetry reduces Sprague's cover by 
0.0019. An indication is given of how to use computers in the solution of this kind of problem. 

1. I N T R O D U C T I O N  

In 1914 Lebesgue posed the problem of finding a universal cover of least area 
in the plane, which is a set having a subset congruent to any given plane set of 
unit diameter. 

In the majority of work on this problem the cover is required to be convex, 
in which case a solution must exist. The most successful tradition is based on 
a regular hexagon, which has been reduced by cutting off the corners: J. Pill in 
1920 [1]; R. Sprague in 1936 [2]; and H. C. Hansen in 1975 [3]. 

A further reduction was obtained by G. F. D. Duffin 1980 [4], who, for the 
first time, introduced a non-convex cover. 

In this paper I shall remain in the convex tradition and make an 
improvement on my 1975 result using almost the same line of reasoning. Just 
as Sprague was mistaken in believing his cover to be minimal, I was wrong in 
conjecturing the minimality of my 1975 cover. I proposed a general 
conjecture stating that Reuleaux n-gons can be covered inside the regular 
hexagon in essentially only one way, at least for n less than 10. Computer 
simulation indicates that the conjecture is correct for n = 3, but for n = 5 and 
upwards an n-gon can often be covered in at least three essentially different 

positions. 
I shall give a few hints showing how to make computer simulations on 

Lebesgue's problem. Furthermore I shall prove that an essential reduction of 
the area is possible if we restrict ourselves to sets with an axis of symmetry, 
which is a slight improvement on my result of 1981 [5]. 

2 .  A S M A L L  C O N V E X  U N I V E R S A L  C O V E R  

Let ABCDEF be a regular hexagon circumscribed about a circle of unit 
diameter. Inside the hexagon, AIA2B1B2C1C2D1D2E1E2F1F2 is the regular 
12-gon circumscribed about the same circle, as shown in Figure 1. 
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Phi proved that the hexagon with the corners B1B2B and FIF2F removed 
was a universal cover. Sprague observed that near D the part  that is outside 
the circle of radius 1 and centre B~ could be removed as well as what is 
outside the circle of radius 1 and centre F 2. I proved that two tiny corners at 

B 2 and F 1 could be removed. However, my result can be improved: 

Let M be the midpoint of DtD 2. Let the circle of radius 1 and centre in M 
intersect AB in P and AF in P'. The circle of radius 1 and centre P is tangent 
to DE in R and intersects ErE 2 in Q. The circle of radius 1 and centre Q 
intersects BC in T and is tangent to B~B2 in S. We obtain R', Q', T', S' by a 
symmetric construction about  the axis DA. We shall prove that either the 
area B2TS or F~ T'S' can be removed from the cover of Sprague. In doing so 
we shall restrict ourselves to sets of constant width 1, which is permissible as 
every set of unit diameter is contained in a set of constant width. 

Let ~ be a set of constant width 1. ~ can be covered by Sprague's cover. 
Suppose that ~ has a point H in the interior of B2 TS. Let the circle of radius 
1 and centre H enter (anti-clockwise) the triangle EEtE2 at a point I on E~E 2 
and leave at a point J, which may be on E1E (as shown in Figure 2) or on 

E1E2. 
Let f# be the intersection of the closed disk of radius 1 and centre H with 
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the closed triangle EE1E 2. As HQ > 1, I is on EIQ. I f J  is on E1E (as in Figure 
2) ~ is obviously outside the circle arc RQ. I f J  is on EIE 2 then J is on Ell and 
again f# is obviously outside the circle arc RQ. 

However, ~ has some point K in the closed triangle EE1E z as ~ of 
constant width has no points in the triangle BBIB 2 and the distance between 

the parallel lines BIB2 and E1E2 is 1. Because H is a point of ~ ,  K must be 
inside the set ~, i.e. K is outside the circle arc RQ or, expressed otherwise, P is 
outside the circle of radius 1 and centre K. However, ~ of constant width 

must have a point L on AB which thus must be in the open section PA in 
order not to have a distance to K exceeding 1. 

By the exact same argument we can prove that if f "  has points in the 
interior of F~ T'S' then ~,~ has a point L' on the interior of AP'. So if ~ has 
points in both F 1 T'S' and B2 TS then the circle arc of radius 1 connecting L 
and L' has a part  inside the triangle A A ~A2, because the arc connecting P and 
P'  is tangent to A~A 2 and the new arc is in a lower position. As a figure of 
constant width 1 always has a circle arc of radius 1 connecting two of its 
points as a subset, ~ must have points in AA1A2. This means that ~ has no 
points inside the opposite triangle DDID 2. 

We can now rotate ~ by 120 degrees anti-clockwise about  the centre of the 
hexagon to ~ ' ,  in which position it is still covered by the hexagon. As ~ had 
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no points  in DD1D 2 or in BB1B2, ~"  will have no points in BB~B 2 or in 
FF1F 2. Nor  will ~ '  have points in B2TS or FIT'S', as ~ is far from B1 and 
D2: ~r curves away from AB at least as fast as the circle arc of radius 1 tangent 
to AB in L, giving ~ a safe distance to B and the above argument shows that 
the midpoint  X of A1A 2 is in ~ which keeps ~ inside the circle of radius 1 

and centre X, giving a safe distance to D2. As Sprague's reduction only 
depends on the fact that a set of constant width has points on AB and on AF, 
we can conclude that B 2 TS can be removed from Sprague's cover. 

The argument does not permit us to remove F1 T'S' as well. However we 
can, near F~, remove what is outside the circle of radius 1 and centre T, as any 
figure of constant width covered by our cover has a point on the side TC. If  
we let the intersection of this circle with F~F 2 be V and we make a numerical 
calculation of the whole construction, the final result is: 

R E D U C E D  CONVEX UNIVERSAL COVER. Sprague's cover can be 
reduced by two areas in the comers  at B2 and F~ in Figure 1: B2TS and 
F1T'V. 

B2TS: B2S and B2T are line segments of lengths 6" 10 -4  and 4- 10 -7 resp. 

TS is a circle arc of radius 1 tangent to B2S at S. The area is 4 .10  -11. 
F1T'V: F1T' and F1V are line segments of lengths 4-10 -7 and 2 .10 -1° 

resp. T'  V i sa  circle arc of radius 1 tangent to T'F at T'. The area is 6- I 0 -  ~8. 
Comments on the result. The area of 6" 10-18 is the one I found in 1973 as 

the size of either of the two comers  that could be cut off. The improvement to 
4-10 T M  for one comer  is obtained by giving up the idea that the cover 

should be symmetrical. Duff also introduced an asymmetrical and even 
smaller non-convex cover in 1980. This indicates that further progress should 
look for asymmetrical covers. 

As to the set-theoretical minimality of the present cover, I doubt  it. The 
figure that suggests itself to span the cover near the new cut-offs can be 
covered in three essentially different positions inside the hexagon - that is, in 
a total of 18 positions, some of which allow bigger cut-offs even after slight 
alterations to the figure. 

3. C O M P U T E R  S I M U L A T I O N  OF THE COVER PROBLEM 

It  is my guess that for further progress in Lebesgue's cover problem better 
insight into the behaviour of figures of constant width is required. Computer  
simulation could be of importance in finding new results and in testing 
hypotheses. In fact it is not difficult to set up a simulation system like this, and 
I shall indicate how it is done if we focus on the following problem: 
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. Let, as in Figure 3, ABCDEF be a hexagon circumscribed about  the circle 

of  diameter 1 and centre O. The angles at A and D are 2w, while the remaining 

angles are 1 8 0 - w .  Let IJ be a tangent to the circle at the point  H on OB and 

let M N  be a tangent at the point  G on OF. We would like to investigate 
whether ~ - AIJCDENM is a universal cover of  figures of unit diameter. I f  

w = 60 degrees we obtain Pal 's  cover. If, however, we find covers for other 

values of  w, such as w = 64, we can reduce Pal 's cover, as I shall prove in the 

last section. 

3.1. Input of Figures 

Any figure of  constant  width unity can be approximated by a Reuleaux n-gon, 

whence we can restrict ourselves to consider such figures. 

Start with one diameter P(2)P(1) in a coordinate  system. P(2)=(0,  0) and 

P(1) = (1, 0) as in Figure 4. For  a given or randomly  selected set of  angles v(i) 
we determine the coordinates (x(i), y(i)) of  the vertices P(i) as follows, starting 
with u = 0  and i = I: 

Repeat until distance (P(i), P(1)) > 1 or distance (P(i), P(2)) > 1 

i = i +  1, u = u+v(i). 
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If i is odd, let 

x( i )  = x ( i  - 1) + cos(u), 

If i is even, let 

x( i )  = x ( i  - 1) + cos(u+ 180), 

End repeat/loop. 

y( i )  = y( i  - 1) + sin(u + 180). 

y( i )  = y(i  - 1) + sin(u + 180). 

If one of the distance conditions in the repeat-line is met we reduce v(i) to 
make that distance equal to unity, calculate P( i  + 1), v(i + 1) and v(0) and the 
input polygon ~ is now constructed. P(1) may disappear as a vertex, but can 
be formally kept as such with v(1) = 0. 

3.2. T h e  S u p p o r t  F u n c t i o n  

We can chose M = (0.5, 0), the midpoint of P(1)P(2), as the base point for our 
support function, d(v),  which measures the distance from M to the tangent of 
the polygon in direction perpendicular to the v-direction. In the direction of 
P(2), v is put equal to 0. Comparing a given v to the stepwise accumulated 
sums v(2) + v(3) + .-. tells us which side or vertex of the polygon is touched by 
the tangent; then it is easy to calculate the point of contact, and as the tangent 
has slope = - c o t ( v )  we can easily calculate the distance from M to the 
tangent, giving us d(v) as a subroutine in the program. 
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3.3. The Covering Condition 

We now want to find out if the polygon ~ we put into the program can be 
covered by ~f~. The computational information is contained in the following 
theorem, which is also of purely theoretical interest: h =(1~cos(w/2)-1)/2. 

T H E O R E M  1. Let 

f (v) = d(v + w) -  d(v + 1 8 0 -  w) - cos(w)(d(v) - d(v + 180)), 

( 2 )  d(v)+d(v+w) 
g(v) --- d v + 2 cos(w/2) + h, 

2 cos(w/2) + h. 

Iff(v) = 0, g(v) <<. 0 and h(v) <~ 0 for some v then and only then can the Reuleaux 
polygon ~ be covered by ~t ~. 

Proof We shall in fact prove that the polygon can be covered in a position 
where BC in Figure 3 is perpendicular to the direction v and tangent to the 
polygon. # can certainly be accommodated with its v-diameter between BC 
and EF, and we can suppose that FA is tangent to ~ .  

We then must prove that the condition f (v)= 0 is equivalent to the 
statement that BA is a tangent to ~ as well, which will prove that ~ is 
accommodated inside the hexagon. 

First we observe that f(v) is independent of the choice of M. Referring to 
Figure 3, a vertical displacement d of M only affects d(v+w) and 
d(v + 180-w),  to both of which will be added d-sin(w), which will not change 
f(v). A horizontal displacement d of M will increase the difference 
d(v)- d(v + 180) by 2d and increase the difference d(v + w)-d(v + 180-w)  by 
2d.cos(w), as is easily seen. Again f(v) remains unchanged. Hence we can 
chose M to be the centre O of the circle inscribed in the hexagon. In that case 
d(v)=d(v+180)=0.5 and d(v+ 180-w)=0 .5  as FA was tangent to ~ .  The 
condition f ( v ) = 0  then reduces to d(v+ w)=0.5, which means that AB is 
tangent to ~ as we set out to prove. 

Secondly, we prove that the condition g(v) <<, 0 ensures that we can remove 
the corner triangle BIJ. Again we start by observing that g(v) is independent 
of the choice of M considering displacements parallel to IJ and perpendicular 
to IJ separately. Thus, we can choose M = 0 in which case d(v)= 0.5 and 
d(v+ w) = 0.5 as BC and AB are tangents to the'clrcle, g(v) ~< 0 now reduces to 
d(v + w/2)- (0.5 + 0.5)/(2 cos(w/2)) + 0.5(1~cos(w~2)- 1) ~< 0 or d(v + w/2) <~ 0.5, 
which is equivalent to the statement that ~ has no points in BIJ. 

That h(v) <~ 0 permits us to remove the triangle NFH is proved in exactly 
the same way. 
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3.4. Results of a Simulation 

If ~ is a universal cover of figures of unit diameter for some w in the interval 
(60, 66) then Pal's cover can be reduced, as a calculation of the area with 
Sprague's improvements will reveal. However, a computer simulation using 
Theorem 1 falsifies the hypothesis of any universal cover oct" in this interval. 
Using random input it can take hundreds of different input figures before 
such a hypothesis is falsified for a given w. The figure found as counter- 
example for a given w is, however, also a counter-example in a certain interval 
around w, because the conditions in Theorem 1 are continuous as functions 
of w. In this way it is possible to falsify the hypothesis for the whole interval. 

The simulation also tells us that, for n > 3, an n-gon is sometimes covered 
in at least three essentially different positions in the regular hexagon (w = 60). 
In fact this is a purely theoretical consequence of Theorem 1: The regular 
pentagon with labelled vertices is covered in five different positions but they 
are all equal/symmetrical from a geometrical point of view. Each position 
corresponds to a v for which f ( v ) =  O, 9(v)< 0 and h(v)< O; moreover, 
f '(v) ~ O. As d(v) is continuous as a function of # ,  so are f(v), h(v) and 9(v). It 
then follows from Theorem 1 that any figure of constant width close to the 
regular pentagon can also be covered in five different positions, and these will 
be essentially different, if the figure has no symmetry. 

4. A S M A L L  U N I V E R S A L  C O V E R  FO R S Y M M E T R I C  F I G U R E S  

If we restrict ourselves to cover figures with an axis of symmetry we can find 
universal covers of substantially smaller areas. In the above notation we can 
state the main result. 

T H E O R E M  2. ~ is a universal cover of symmetric figures of unit diameter for 
any positive w less than or equal to 90 deorees. 

Proof As a symmetric figure of unit diameter is a subset of a symmetric 
figure of constant width unity, we only have to prove the theorem for these 
figures. 

Let ~ be a symmetric figure of constant width unity. It can obviously be 
placed inside the hexagon in Figure 3, if we put the axis of symmetry along 
AD. If o~ has points in the triangle IJB then it cannot have points in the 
triangle I'J'E symmetrically situated about O, as IJ  and I'J' are parallels at 
unit distance. Because of the horizontal symmetry of the hexagon we can thus 
assume that ~ has no points in IJB. As ~ is symmetric about AD it does not 
have points in M N F  either, i.e. is covered by 3~ for any w. 
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T H E O R E M  3. The minimal area of ~ with Sprague's cut-offs at D is 0.84236 
and is obtained for w=63.5 degrees. 

Proof. As ~ has no points on BI or F M  in Figure 3, it cannot, near D, have 
points outside the circle of radius 1 and centre I or outside the circle with 
centre M. These are the Sprague cut-offs. The numerical calculation is 

elementary. 

This result is an essential reduction of Sprague's minimum of 0.84414. The 
result can be slightly improved. In oW the two isosceles triangles BJI and 

F N M  have base angles equal to w/2. If  we still let IJ  and M N  be tangents of 
the circle but reduce the lower angles JIB and N M F  by v, we can obtain 
Sprague cut-offs larger than the reduction in the area of the triangles. The 

referee pointed out to me that cut-offs are also possible at the vertices C and E 
in Figure 3, as the angle here is larger than 120 degrees. In fact we can use 
Sprague's reasoning: Since any figure of constant width covered by ~ has 
points on BA and on AF, it cannot have points outside the circle of radius 1 
and centre A in the corners at C and E. It  is not difficult to make a small 
computer  program calculating the resulting area as function of w and v. The 
most favourable situation, obtained for w = 63.776 and v = 1.86, gives an area 

of 0.842203809, which could be the minimal area for covers of symmetric 

figures of unit diameter. 
As stated in Section 3, these covers are not universal covers for figures of 

unit diameter in general. 
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